
DRAFT

DRAFT

Defense Information Infrastructure (DII)
Common Operating Environment (COE)

Version 3.0 (Series)

Baseline Specifications

October 31, 1996

Joint Interoperability and Engineering Organization
Defense Information Systems Agency

DRAFT

DRAFT

EXECUTIVE SUMMARY

The DII COE concept is best described as an architecture that is fully compliant with the DoD
Technical Architecture for Information Management (TAFIM), Volumes 2 and 3, and the DoD
Joint Technical Architecture (JTA), an approach for building interoperable systems, a collection
of reusable software components, a software infrastructure for supporting mission area
applications, and a set of guidelines and standards. The guidelines and standards specify how
to reuse existing software and how to properly build new software so that integration is
seamless and, to a large extent, automated.

The COE is a “plug and play” open architecture designed around a client/server model. The
COE is not a system; it is a foundation for building an open system. Functionality is easily
added to or removed from the target system in small manageable units called segments.
Structuring the software into segments is a powerful concept that allows considerable flexibility
in configuring the system to meet specific mission needs or to minimize hardware requirements
for an operational site. Site personnel perform field updates by replacing affected segments
through use of a simple, consistent, graphically oriented user interface.

The COE represents a departure from traditional development programs. It emphasizes
incremental development and fielding to reduce the time required to put new functionality into
the hands of the warrior while not sacrificing quality nor incurring unreasonable program risk or
cost. This approach is sometimes described as a “build a little - test a little - field a lot”
philosophy. It is a process of continually evolving a stable baseline to take advantage of new
technologies as they mature and to introduce new capabilities. But the changes are done one
step at a time so that the warfighters always have a stable baseline product while changes
between successive releases are perceived as slight.

The primary purpose of this document is to provide developers with the baseline configuration
for the DII COE version 3.0.

i

DRAFT

DRAFT

TABLE OF CONTENTS

Section Page

1. Introduction 1-1

1.1 Scope 1-3
1.2 Applicable Documents and Standards 1-3
1.3 Document Structure 1-4

2. The DII COE Concept 2-1

2.1 DII COE As a System Foundations 2-2
 2.2 DII COE As an Architecture 2-3
 2.3 DII COE As an Implementation Strategy 2-4
 2.4 Assumptions and Objectives 2-5

3. DII Architecture and COE Baseline Configuration 3-1

 3.1 DII Architecture 3-1
 3.2 DII COE Version 3.0 Baseline Configuration 3-2
 3.2.1 Kernel COE Components 3-2

 3.2.1.1 Operating Systems and Patches 3-2
 3.2.1.2 Desktop 3-2
 3.2.1.3 Distributed Computing and Object Management 3-3
 3.2.1.4 Printing Services 3-3
 3.2.1.5 COE Runtime Tools 3-3
 3.2.1.6 Security Management 3-4
 3.2.1.7 System Management 3-5
 3.2.1.8 Windowing 3-5

 3.2.2 Non-Kernel COE Components 3-5
 3.2.2.1 Communications 3-5
 3.2.2.2 Data Management Services 3-5
 3.2.2.3 Distributed Computing and Object Management 3-6
 3.2.2.4 Management Services 3-7
 3.2.2.5 Mapping, Charting, Geodesy & Imagery 3-8
 3.2.2.6 Message Processing 3-8
3.2.2.7 Office Automation 3-9
3.2.2.8 Software Development Services 3-9

Appendix A DII COE Taxonomy A-1

Appendix B DII Kernel Components by Platform B-1

Appendix C DII Non-kernel Components by Platform C-1

ii

LIST OF FIGURES

DRAFT

DRAFT

Figure Page

Figure 2-1 DII COE and COE Based Systems 2-2
Figure 3-1 DII Notional Single Node Infrastructure 3-1

LIST OF TABLES

Table Page

Table A-1 DII COE Taxonomy A-1
Table B-1 DII COE Version 3.0 Kernel Components B-2
Table C-1 DII COE Version 3.0 Non-Kernel Components C-2

iii

DRAFT

DRAFT

SECTION 1

INTRODUCTION

The Defense Information Infrastructure (DII) Common Operating Environment (COE) originated
with a simple observation about command and control systems: certain functions (mapping, track
management, communication interfaces, etc.) are so fundamental that they are required for virtually
every command and control system. Yet these functions are built over and over again in
incompatible ways even when the requirements are the same or vary only slightly between
systems. If these common functions could be extracted, implemented as a set of extensible, low-
level building blocks and made readily available to system designers, development schedules could
be accelerated and substantial savings could be achieved through software reuse. Moreover,
interoperability would be significantly improved if common software were used across systems for
common functions.

This observation led to the development of the DII COE which is planned for use in systems
throughout DoD. Two such systems are the Global Command and Control System (GCCS) and
the Global Combat Support System (GCSS). Both systems use the same infrastructure and
integration approach and they use the same COE components for functions that are common.

GCCS is a Command, Control, Communications, Computers and Intelligence (C4I) system with
two main objectives: the replacement of the World-Wide Military Command and Control System
(WWMCCS) and the implementation of the C4I For the Warrior concept. GCCS includes multiple
workstations cooperating in a distributed LAN/WAN environment. Key features include
"push/pull" data exchange, data processing, sensor fusion, dynamic situation display, analysis and
briefing support, and maintenance of a common tactical picture among distributed GCCS sites.

GCSS is presently under development and is targeted for the warfighting support functions
(logistics, transportation, etc.) to provide a system that is fully interoperable with the warfighter
C4I system. Implemented to its fullest potential, GCSS will provide both warfighter support to
include reachback from deployed commanders into the CONUS sustaining base infrastructure and
cross-functional integration on a single workstation platform.

Initial COE development was driven by the requirement to build a suitable WWMCCS
replacement. WWMCCS maintenance costs were significant and the system was rapidly reaching
the point of technical obsolescence. A significant component of the COE challenge was to
strategically position the system architecture so as to be able to take advantage

1-1

DRAFT

DRAFT

of technological advances. At the same time, the system could not sacrifice quality, stability, or
functionality already in the hands of the warrior. In keeping with current DoD trends, the COE
emphasizes use of commercial products and standards where applicable to take advantage of
investments made by commercial industry.

To achieve the WWMCCS replacement objective, technical experts and program managers from
each of the services, DODIIS, NIMA, and other interested agencies met for several months
beginning in the fall of 1993. Participants proposed candidate systems as a possible starting point
for the COE architecture or as a suitable candidate for providing capabilities to meet WWMCCS
replacement requirements. None of the candidate systems met all requirements, but it was clear
that a combination of the "best" from several systems could produce a system that would be
suitable for WWMCCS replacement. Moreover, an infrastructure could be put into place and a
migration strategy defined to preserve legacy systems until migration to the intended architecture
could be realized.

The cornerstone architectural concept jointly developed during these series of meetings is the DII
COE. The present COE is composed of software contributed from several candidate systems
evaluated by this joint engineering team. It is being expanded to include global data management
and workflow management for GCSS logistics applications. It will expand further as more
functional areas employ its services in areas such as Electronic Commerce/Electronic Data
Interchange (EC/EDI), transportation, base support, personnel, health affairs, and finance. The
COE is described more completely in the DII COE Integration and Runtime Specifications. This
document also describes technical information required to properly access and extend software
contained within the COE.

An initial proof-of-concept system, GCCS 1.0, was created and installed in early 1994 at one
operational site to validate the approach and to receive early feedback. GCCS 1.1 followed in the
summer of 1994 and was the first attempt to integrate software from the Army AWIS and Navy
JMCIS programs as initial COE components. GCCS 1.1 included mission applications from a
variety of other programs operating in a "federated" mode, that is, constructed so as to be able to
run on the same hardware without interfering with other software, but not yet able to effectively
share data between applications. This successful effort allowed GCCS 1.1 to be installed and
tested at beta sites and was used at certain operational sites to monitor events during the 1994 Haiti
crisis. GCCS 2.0 fielding began in early 1995 at a number of operational sites. GCCS 2.1 was
fielded in mid-1995. GCCS 2.2 is scheduled to be released in late-1996. The GCCS 2.0 series
marks the real beginning of the DII COE concept. Use of the DII COE is crucial in being able to
rapidly integrate software from candidate programs to successfully build a baseline with an ever
increasing level of functionality.

1-2

DRAFT

DRAFT

The DII COE has its roots in command and control, but the principles and implementation
described in this document are not unique to GCCS nor GCSS. The principles and implementation
are not limited to command and control or logistics applications, but are
readily applicable to many other application areas. The specific software components selected for
inclusion in the COE determine the mission areas that the COE can address.

1.1 DOCUMENT SCOPE

This document describes the baseline configuration of the DII COE version 3.0. It will provide an
overview of the DII COE version 3.0 architecture, architecture guidelines, configuration, and the
associated APIs. This document supersedes the DII COE Version 2.0 (Series) Baseline
Specifications dated June 28, 1996. All segments submitted to DISA are required to be formatted
in accordance with the DII COE Integration and Runtime Specificiations.

1.2 APPLICABLE DOCUMENTS AND STANDARDS

This document is one in a series of related documents which define development requirements,
system architecture, engineering tools, and implementation techniques. Many of the documents
cited are available on the World Wide Web. Alternatively, contact the DII COE Configuration
Management office for information on how to obtain the desired documents.

Because the COE and COE-based systems are ongoing programs, enhancements and additional
features are developed on a regular basis. Documentation updates are regularly released for each
of the documents listed here. Be sure to always reference the latest version for the documents
listed below and be aware that many of the documents are being modified and extended to address
DII COE-based systems, not just GCCS or GCSS..

DISA, DII Common Operating Environment Integration and Runtime Specifications
version 2.0, October 23, 1995. This document describes the technical requirements for
using the DII COE to build and integrate systems.

DISA Joint Interoperability Testing Command (JITC), GCCS 3.0 Compliance Program
Plan, Draft Version. This document is a proposal for how to formally test segments for
GCCS COE compliance. It is currently in draft form and is undergoing revision. It will
form the basis for measuring COE compliance across all COE-based systems.

1-3

DRAFT

DRAFT

DoD, Joint Technical Architecture Version 1.0 dated August 22, 1996. The JTA is a
document that identifies a common set of mandatory information technology standards and
guidelines to be used in all new and upgraded Command, Control, Communications,
Computers, and Intelligence (C4I) acquisitions across DoD.

DoD, Technical Architecture Framework for Information Management. This is a multi-
volume document which defines a standards profile and the DoD Technical Reference
Model (TRM) for information management systems.

User Interface Specification for the Defense Information Infrastructure Version 2.0 dated
April 01, 1996. This document, sometimes called the Style Guide, defines the "look and
feel" for developing user interfaces for the DII. This style guide is closely patterned after
the commercial Motif style guide.

1.3 DOCUMENT STRUCTURE

Section 1 of this document is an overview of the DII COE.

Section 2 provides a brief description of the DII COE concept in terms of strategy, architecture,
and implementation.

Section 3 provides a description of the DII architecture and the DII COE Version 3.0 baseline
configuration.

Appendix A provides the current DII COE Taxonomy

Appendix B provides a detailed list, by platform, of the software segments that are included in the
DII COE Version 3.0 Kernel.

Appendix C provides a detailed list, by platform, of the DII COE Version 3.0 software segments
above and beyond the Kernel.

1-4

DRAFT

DRAFT

SECTION 2

THE DII COE CONCEPT

The DII COE concept is a fundamentally new approach that is much broader in scope than simple
software reuse. Software reuse itself is not a new idea. Unfortunately, most software reuse
approaches to date have been less than satisfactory. Reuse approaches have generally emphasized
the development of a large software repository from which designers may pick and choose
modules or elect to rebuild modules from scratch. It is not sufficient to have a large repository and
too much freedom of choice leads to interoperability problems and duplication of effort. This
rapidly negates the advantages of software reuse.

The DII COE does emphasize both software reuse and interoperability, but its principles are more
far-reaching and innovative. The COE concept encompasses:

• an architecture and approach for building interoperable systems
• an infrastructure for supporting mission area applications
• a rigorous definition of the runtime execution environment
• a rigorous set of requirements for achieving COE compliance
• an automated toolset for enforcing COE principles and measuring COE compliance
• an automated process for software integration
• a collection of reusable software components
• an approach and methodology for software reuse
• a set of APIs for accessing COE components

In the context of this document, the COE must be understood as a multi-faceted concept. Proper
understanding of how the many facets interact is important in appreciating the scope and power of
the DII COE and to avoid confusion in understanding COE material. The next subsection deals
with three specific facets in more detail: the COE as a system foundation, the COE as an
architecture, and the COE as an implementation strategy.

To view the COE as a C4I system is incorrect because it misses the fundamental point that the
COE is not a system: it is a foundation for building an open system. This viewpoint also makes
fielding and updating schedules confusing because it fails to account for the impact of the
evolutionary development strategy. To view the COE as GCCS or just an architecture gives the
mistaken impression that its principles are limited to the GCCS program. GCCS is simply the first
system built on top of the DII COE while development of GCSS is still in progress. This view also
fails to account for the fact that a baseline already exists composed of components selected from
mature service/agency programs. Finally, to view the COE as just an implementation strategy is a
limited perspective because it fails to account for the fact

2-1

DRAFT

DRAFT

that there has been a near-term, real-world objective (WWMCCS replacement). It ignores the
evolutionary nature of the COE and mission applications development and it ignores the implied
requirement to provide an easy update mechanism for operational sites.

2.1 THE DII COE AS A SYSTEM FOUNDATION

Figure 2-1 shows how the DII COE serves as a foundation for building multiple systems. The
shaded box shows two types of reusable software: the operating system and COE components.
Section 3 describes the COE components in more detail and the supported operating systems. For
the present discussion, it is sufficient to note that these components are accessed through APIs and
that they form the architectural backbone of the target system.

GCCS GCSS Other Other

H/W Platform

Standard Application Program

COE Components

Operating System Services

DII COE

COE Based Systems

Figure 2-1: DII COE and COE Based Systems

2-2

DRAFT

DRAFT

Building a target system such as GCCS or GCSS is largely a matter of combining COE
components with mission specific software. The COE infrastructure manages the flow of data
through the system, both internally and externally. Mission specific software is mostly
concerned with requesting data from the COE and then presenting it in a form that is most
meaningful to the operator (e.g., as a pie chart, in tabular form, or as a graph). The COE provides
the necessary primitives for such data manipulation and has the necessary information about where
the requested data is stored, whether locally or remotely across the LAN/WAN. This frees the
system designer to concentrate on meaningful data presentation and not on the mechanics of data
manipulation, network communications, database storage, etc.

It must be kept in mind, however, that there is only one COE. Each system uses the same set of
APIs to access common COE components, the same approach to integration, and the same set of
tools for enforcing COE principles. Systems are built on top of the COE and use precisely the
same COE software components, not just the same algorithms, for common functions (e.g.,
communications interfaces and dataflow management). This approach to software reuse
significantly reduces interoperability problems because if the same software is used, there is no
chance of interpreting or implementing standards differently.

2.2 The DII COE as an Architecture

The DII COE is a "plug and play" open architecture designed around a client/server model.
Functionality is easily added to or removed from the target system in small manageable units,
called segments. Segments are defined in terms of functions that are meaningful to operators, not
in terms of internal software structure. Structuring the software into segments in this manner is a
powerful concept that allows considerable flexibility in configuring the system to meet specific
mission needs or to minimize hardware requirements for an operational site. Site personnel
perform field updates by replacing affected segments through use of a simple, consistent,
graphically oriented user interface.

The DII COE model is analogous to the Microsoft Windows® paradigm. The idea is to provide a
standard environment, a set of standard off-the-shelf components, and a set of programming
standards that describe how to add new functionality to the environment. The Windows paradigm
is one of a "federation of systems" in that properly designed applications can coexist and operate in
the same environment. But simple coexistence is not enough. It must be possible for applications
to share data. The DII COE extends the Windows paradigm to allow for true "integration of
systems" in that mission applications share data at the server level.

Federation versus integration is an important architectural advantage. However, integration is not
possible without strict standards that describe how to properly build components to add

2-3

DRAFT

DRAFT

to the system. This document and other related documents detail the technical requirements for a
well behaved, COE-compliant application. The COE provides automated tools to measure
compliance and to pinpoint problem areas. A useful side effect of the tools and procedures is that
software integration is largely an automated process, thus significantly reducing development time
while automatically detecting potential integration and runtime problem areas.

More precisely, to a developer the DII COE is:

• An Architecture: A precisely defined TAFIM-compliant (Technical Architecture
Framework for Information Management), client/server architecture for how system
components will interact and fit together and a definition of the system level interface to
COE components.

• A Runtime Environment: A standard runtime operating environment that includes "look

and feel," operating system, and windowing environment standards. Since no single
runtime environment is possible in practice, the COE architecture provides facilities for a
developer to extend the environment in such a way as to not conflict with other developers.

• Software: A clearly defined set of already implemented, reusable functions.

• APIs: A collection of Application Programmer Interfaces (APIs) for accessing COE

components. Thus, the COE is a set of building blocks in the same sense that X Windows
and Motif are building blocks for creating an application's Graphical User Interface (GUI).

2.3 The DII COE as an Implementation Strategy

The COE is also an evolutionary acquisition and implementation strategy. This represents a
departure from traditional development programs. It emphasizes incremental development and
fielding to reduce the time required to put new functionality into the hands of the user, while not
sacrificing quality nor incurring unreasonable program risk or cost. This approach is sometimes
described as a "build a little - test a little - field a lot" philosophy. It is a process of continually
evolving a stable baseline to take advantage of new technologies as they mature and to introduce
new capabilities. But the changes are done one step at a time so that the warfighters always have a
stable baseline product while changes between successive releases are perceived as slight.
Evolutionary development has become a practical necessity for many development programs
because the traditional development cycle time is longer than the technical obsolescence cycle time.

2-4

DRAFT

DRAFT

From the perspective of a COE-based system, the implementation strategy is to field new releases
at frequent intervals. Each release might include enhancements to both the COE and mission area
applications. Mission-area applications are considered to be provisional, subject to user feedback.
Applications for which feedback is favorable are retained in subsequent releases and hardened as
needed for continued operational use. As appropriate, mission applications that are widespread in
use and commonality will be integrated into the COE or evolved to add new features.

The COE implementation strategy is carefully structured to protect functionality contained in
legacy systems so that over time they can migrate to full COE utilization. This is achieved through
publishing "public" and "private" APIs. Public APIs are those interfaces to the COE that will be
supported for the life cycle of the COE. Private APIs are those interfaces that are supported for a
short period of time to allow legacy systems to migrate from unsanctioned to sanctioned APIs. All
new development is required to use only public APIs and use of any other APIs results in a non-
COE-compliant segment. The process of migrating from existing legacy "stove-pipe" systems to
utilizing the COE is a primary source for articulating technical requirements for the COE and it
provides program managers with information useful to establishing development priorities.

From the perspective of a system developer, whether developing a new application or migrating an
existing one, the COE is an open client/server architecture that offers a collection of services and
already built modules for mission applications. Thus, the developer's task is to assemble and
customize existing components from the COE while developing only those unique components that
are peculiar to particular mission requirements. In many (if not most) cases this amounts to adding
new pull down menu entries and icons.

2.4 Assumptions and Objectives

The following assumptions apply to the DII COE:

• The DII COE will migrate to full compliance with the TAFIM standards profile. These
standards promote an open systems architecture, the benefits of which are assumed to be
well known and generally accepted.

• The DII COE is to be hardware independent and will operate on a range of open systems

platforms running under standards-based operating systems. Program driven
requirements, associated testing costs, and funding will dictate which specific hardware
platforms are given priority.

 2-5

DRAFT

DRAFT

• Non-developmental items (NDIs), including both commercial off-the-shelf (COTS) and

government off-the-shelf (GOTS) products, are the preferred implementation approach.

WWMCCS replacement was the main focus for near-term development, while longer-term
development is driven by C4I For the Warrior requirements, logistics support requirements for
GCSS, and by financial support requirements for EC/EDI. These broad program drivers lead to a
number of program objectives that include those stated in the TAFIM, Volume 2:

1. Commonality: Develop a common core of software that will form the foundation for
Joint systems, initially for C4I and logistics systems.

2. Reusability: Develop a common core of software that is highly reusable to take
advantage of the investment already made in software development across the services
and agencies.

3. Standardization: Reduce program development costs through adherence to industry
standards. This includes use of commercially available software components whenever
possible.

4. Engineering Base: Through standardization and an open architecture, establish a large
base of trained software/systems engineers.

5. Training: Reduce operator training costs and improve operator productivity through
enforcement of a uniform human-machine interface, commonality of training
documentation, and a consistent "look and feel."

6. Interoperability: Increase interoperability through common software and consistent
system operation.

7. Scalability: Through use of the segment concept and the COE architectural
infrastructure, improve system scalability so that COE-based systems will operate with
the minimum hardware resources required.

8. Portability: Increase portability through use of open systems concepts and standards.
This also promotes vendor independence for both hardware and software.

9. Security: Improve system security.

 10. Time: Reduce testing costs because common software can be tested and validated
once and then applied to many applications.

2-6

DRAFT

DRAFT

 SECTION 3

DII ARCHITECTURE AND COE BASELINE CONFIGURATION

This section describes the DII architecture and the DII COE baseline configuration for version 3.0.

3.1 DII ARCHITECTURE

The DII architecture consists of a 3-tier client/server environment incorporating data servers, applications
servers, and workstations. These correspond (ideally) to and help support separation of data, function, and
presentation services. Each component operates on an 802.3 standard Local Area Network (LAN), dedicated
lines, or via dial-up through a communications server. The DII architecture supports a communications
capability that provides data transfer facilities among workstations and servers. Figure 3-1 illustrates a
notional DII single node infrastructure.

Backbone LAN

Data Server Applications Servers

> 2

Premise Router

DISN

Comm Server

Subnet LA
N

Subnet LA
N

R
em

ote LA
N

Premise Router

KG/
MUX

KG/
MUX

KG/
MUX

KG/
MUX

Applications Server

Windows W/S

Unix W/SUnix W/S

Unix W/S

Unix W/S

Unix W/S

Windows W/S

Windows W/S

Windows W/S

Windows W/S

n

n n n

n
n

....

Figure 3-1 DII Notional Single Node Infrastructure

3-1

DRAFT

DRAFT

A DII single node infrastructure is, at its simplest, a single workstation but more commonly will consist of
at least one database server and two application servers. The database server will act as the repository for all
databases and, optionally, applications. The database server may also act as a file server by hosting user
accounts, user-specific data, and other site-specific files not deployed with systems. Applications servers host
applications and may also act as file servers. One or more subnet LANs may be supported with, optionally, an
applications server to localize user account traffic to that subnet. Remote LANs, either logical subnets of the
host database site or self-contained, self-administered LANs, can share access to the database server. Finally,
remote workstations can access applications and data via dial-up or dedicated circuits. Remotes with limited
bandwidth will not have access to the complete suite of mission applications available to local users.

3.2 DII COE VERSION 3.0 BASELINE CONFIGURATION

The following sections represent a consolidated list of all software that is or soon will be available in the DII
COE version 3.0 independent of platform. The segments are grouped by COE functionality as it maps to the
DII COE taxonomy. For ease of reference, the table in Appendix A provides the current DII COE Taxonomy.
 In addition, Appendices B and C provide the specific availability of each segment by platform.

3.2.1 Kernel COE Components

3.2.1.1 Operating Systems (OS) and Patches

The operating system load provides a standard release of a vendor-specific OS and a specified set of patches
which must be applied to guarantee a standard runtime environment and well-behaved execution of layered
COE variants.

3.2.1.2 Desktop

3.2.1.2.1 Common Desktop Environment (CDE). CDE provides a single common desktop for the user, for
all applications, across all DII Unix platforms. It provides the desktop interface and other functions provided
with it on each workstation.

3.2.1.2.2 Microsoft Windows NT. DII COE on the Microsoft Windows NT platform uses the desktop
inherent in Windows NT 3.51. Microsoft Windows NT 3.51 provides a desktop environment similar to MS
Windows 3.1.

3-2

DRAFT

DRAFT

3.2.1.3 Distributed Computing & Object Management

3.2.1.3.1 Distributed Computing Environment (DCE): DCE Client for Unix and DCEClient for Windows NT

3.2.1.3.1.1 Threads. The DCE Threads service provides application programmers with the ability to create
independent execution threads within the same program. This gives an
application the ability to carry out multiple computing tasks concurrently with minimal overhead.

3.2.1.3.1.2 Remote Procedure Call (RPC). The DCE RPC service allows an application component running
in one computer to use a simple procedure call mechanism to invoke a procedure running in some other
computer on the network. This hides many of the complexities of network communications from application
developers.

3.2.1.3.1.3 Distributed Time Service (DTS). The DCE DTS allows application programs to request services
that work with date and time-of-day values in a standardized manner that is the same across all computing
platforms. The DTS also implements a set of distributed algorithms that ensure the clocks in all the computers
in a network are synchronized and contain correct values for the date and time.

3.2.1.3.1.4 Directory Service. The DCE Directory Service implements a distributed repository that stores
information about objects in the computing environment, including users, computers, and distributed services
that application programs can request. It provides facilities for submitting a name to the Directory Service and
getting back a list of the attributes associated with that name. It includes two components; the Global
Directory Service and the Cell Directory Service.

3.2.1.4 Printing Services

3.2.1.4.1 Print Services. Print Services provide the basic print capability of the system. It provides such
functions as user selection of a default printer, printer administration, and a common way of accessing print
resources from an application program. It also includes print queue management and remote printer
administration.

3.2.1.5 COE Runtime Tools

The COE Runtime Tools provide basic system administration tools required by the administrator to install,
configure, and deinstall systems. They also provide the developers with a means to communicate with the
operator during segment installation.

3.2.1.5.1 COEAskUser. Display a message to the user, and have the user click on a button (Yes/No,
True/False, Accept/Cancel, etc.) in response to the message.

3-3

DRAFT

DRAFT

3.2.1.5.2 COEFindSeg. Return information about a requested segment. The tool sets status and writes
the pathname, segment name, segment prefix, and segment type information to stdout.

3.2.1.5.3 COEInstaller. Display a list of variants or segments that may be installed from tape, disk, or other
electronic media. It is normally executed by an operator who selects it from a System Administrator menu to
install or deinstall segments.

3.2.1.5.4 COEInstError. Display an error message to the user from within a PreInstall, PostInstall, or
DeInstall script signaling termination or de-installation of the segment.

3.2.1.5.5 COEMsg. Display a message to the user and have the user click on the “OK” button to continue.
The tool may be used by the PreInstall, PostInstall, and DeInstall scripts.
3.2.1.5.6 COEPrompt. Display a message to the user and have the user enter a response to the message. The
tool may be used by the PreInstall, PostInstall, and DeInstall scripts.

3.2.1.5.7 COEPromptPasswd. Prompt user to enter a password. The tool may be used by the PreInstall,
PostInstall, and DeInstall scripts.

3.2.1.5.8 COEUpdateHome. Update the home environment variable within a script file to point to where a
segment was actually installed.

3.2.1.6 Security Management

In addition to security services, security administration consists of some security-related enhancements to the
base runtime environment established by the platform-specific operating system. In particular, the following
modules are provided:

3.2.1.6.1.1 Console. Console provides a read-only window for the use of applications which need it (i.e., the
application can display information on it but users cannot enter anything into it).

3.2.1.6..1.2 Deadman. Deadman locks the user’s terminal if the keyboard and mouse have been idle for
longer than a configurable time, defaulting to 5 minutes.

3.2.1.6.1.3 Password. Password allows users to change their own passwords.

3.2.1.6.1.4 X Display Manager (XDM). XDM controls access to the system from the login screen.

3.2.1.6.1.5 Security Manager. Security Manager sets profile configuration, creates or edits local and global
user profiles, and creates or edits local and global user accounts.

3-4

DRAFT

DRAFT

3.2.1.7 System Mangement

3.2.1.7.1 Process/Session Manager. Manager provides process management.

3.2.1.8 Windowing

3.2.1.8.1 MIT X Windows X11R5. X Windows provides a network-transparent communication protocol
between an application and its presentation logic, high-performance device-independent graphics, and a
hierarchy of resizable, overlapping windows. This is the standard windowing package for DII Unix-based
platforms.

3.2.1.8.2 MOTIF Window Manager. The Open Group’s MOTIF is the graphical user interface built on X
Windows. This is the standard windowing interface for the DII Unix platforms.

3.2.1.8.3 Microsoft Windows. Microsoft windows is the intrinsic graphical user interface provided with
Windows NT. This is the standard windowing interface for the DII Windows NT platforms.

3.2.2 Non-Kernel COE Components

3.2.2.1 Communications

3.2.2.1.1 Unified Build Core (UB). UB Core provides basic Command, Control, Communications, Computers
and Intelligence services to receive and process messages, update a track database, perform correlation and
data fusion services, and display the tactical picture.

3.2.2.1.2 Link 11/Tadil-A. Link 11/Tadil-A allows the satisfaction of multiple platform requirements using
an implementation-independent approach.

3.2.2.1.3 Army Communications Server. Army Communications Server provides the common
communications infrastructure for the Army Common Hardware and Software program in support of the Army
Battle Command System. The use of the Communications Server software will improve coordination and
control of battlefield forces through effective use of communications resource while minimizing program cost
through a systematic reuse process.

3.2.2.2 Data Management Services

A Relational Database Management System (RDBMS) supplies storage of and access to data objects based on
a relational data model. Many of the major RDBMS vendors supplying Unix-based products will be
supported across all DII Unix platforms. There are three RDBMSs in the DII COE Version 3.0 baseline and
they are as follows:

 3-5

DRAFT

DRAFT

3.2.2.2.1 Oracle. The Oracle segments provide the database engine, tools, forms, and SQLnet support for DII
COE database applications.

3.2.2.2.2 Sybase. The Sybase segments provide the database engine, tools, forms, and SQLnet support for
DII COE database applications.

3.2.2.2.3 Informix. The Informix segments provide the database engine, tools, forms, and SOLnet support for
DII COE database applications. In addition to databases, Data Management Services include support for the
Shared Data Environment.

3.2.2.2.4 Joint Computer-aided Acquisition Logistics Support System (JCALS). JCALS consists of a Global
Data Management System (GDMS) with the client/server architecture. The server provides services that
support a conceptually centralized, homogeneous database environment. The client provides a command line
interface with GDMS.

3.2.2.3 Distributed Computing & Object Management

3.2.2.3.1 Distributed Computing Environment Servers (DCES)

3.2.2.3.1.1 Security Server. The DCE Security Server provides user Identification/ authentication, user
authorization, user access control, and secure data communications services for the DCE aware functions
within the cell. Single log-in allows users to log into multiple hosts with a single password. The DCE Security
Server is based on Kerberos for identification/authentication and the Portable Open System Interface (POSIX)
technologies for access control and audit services. The DCE security service provides a server replication
mechanism. If the primary security server is down for any reason, the secondary (or replicated) security server
can take over the security operations through the DCE security service administrative commands. The systems
hosting a DCE security server must be physically protected from unauthorized access.

3.2.2.3.1.2 Directory Service. The Global Directory Service (GDS) handles directory operations that take
place between individual DCE cells. GDS is based on the X.500 standard. The Cell Directory Service (CDS)
handles directory operations that take place within a single DCE cell.

3.2.2.3.2 Distributed File Server (DFS). DFS promotes distributed file sharing and management.

3.2.2.3.3 Cell Manager. Cell Manager is a suite of graphical tools that simplifies administration of DCE-
based networks. The graphical tools help DCE administrators to organize, monitor, and control access to DCE
services.

3.2.2.3.4 News Make Group. allows users to create news groups for use in teleconferencing applications (i.e.,
News servers for DII).

 3-6

DRAFT

DRAFT

3.2.2.4 Management Services

3.2.2.4.1 File Transfer Protocol Tool (FTPTool). File Transfer Protocol allows users to transfer files between
workstations over a network. The FTPTool program provides a GUI for file transfer protocol.

3.2.2.4.2 GZIP. GZIP provides software compression/ decompression services to other segments. Files on
disk drives can be stored with less disk space by compressing the files using GZIP. GZIP includes the
gunzip utility to decompress files compressed by gzip, compress, or pack programs.

3.2.2.4.3 PERL. PERL provides scripting and administration services to other segments.

3.2.2.4.4 System Profile Inspector (SPI). SPI is used to allow the examination of the system for its security
integrity.

3.2.2.4.5 STREAMS. STREAMS is a general, flexible facility and a set of tools for development of Unix
system communications services. STREAMS support services ranging from complete networking protocol
suites to individual device drivers. STREAMS defines standard interfaces for character I/O within the kernel
and between the kernel and the rest of the system. The standard interface and open-ended mechanism enable
modular, portable development and easy integration of higher performance network services and their
components.

3.2.2.4.6 Hewlett-Packard (HP) NetMetrix Remote Monitoring (RMON) Agent. NetMetrix assists in
monitoring the performance of network segments (ethernet, FDDI, tokenring), and troubleshooting network
problems. The HP NetMetrix product consists of two parts. One is the remote monitoring Power Agent which
implements all nine groups of
the RMON MIB (RFC 1271) plus extensions. The other is the application toolbox which implements the
graphical toolset consisting of the network load monitor, the network file system (NFS) monitor, the protocol
analyzer, the traffic generator, and the internetwork monitor.

3.2.2.4.7 Empire System Manager Agent for Solaris 2.4 and Empire System Manger Agent for HP-UX 9.07.
 Empire Unix Systems Management Agent implements MIB-II (RFC 1213), Empire Unix Management MIB,
and the Host Resources MIB (RFC 1514). The Unix MIB defines groups for kernel and systems parameters,
boot configuration, network, streams, I/O buffer statistics, kernel performance statistics, and an object
monitoring table. The Host Resources MIB includes information on storage areas (file systems, disk partitions,
running and installed software, etc.) and the host system’s devices such as keyboard, disks, and network cards.
 The Unix System Agent interoperates with SNMP NMS platforms such as SunNet Manager and others.

 3-7

DRAFT

DRAFT

3.2.2.4.8 Courtney. Courtney will detect if your system is being scanned by SATAN, ISS or some other
system scanner.

3.2.2.4.9 Crack. Crack has the potential to reveal the passwords on your system. Its use should be restricted
to the Security Administrator.

3.2.2.4.10 SATAN. SATAN has the ability to reveal security vulnerabilities in your network. The use of this
segment should be restricted to the Security Administrators.

3.2.2.4.11 TCP Wrappers. TCP wrappers is used to monitor and restrict network connections.

3.2.2.4.12 Tripwire. Tripwire is an integrity checker. Tripwire is useful to detect unauthorized changes made
by authorized users and to determine what damage your system has sustained after an intrusion.

3.2.2.4.13 Tivoli. Tivoli provides client-server services for managing heterogeneous workstations and other
desktop systems.

3.2.2.4.14 NewsPrint. NewsPrint contains the software package (printing drivers) that allow for printing on
Solaris.

3.2.2.5 Mapping, Charting, Geodesy & Imagery (MCG&I)

3.2.2.5.1 Joint Mapping Toolkit (JMTK). JMTK provides objects and services to support geospatial analysis,
mapping (visual) display, geospatial database management, and image preprocessing.

3.2.2.6 Message Processing

3.2.2.6.1 Internet Relay Chatter (IRC). IRC is a real-time interactive conferencing tool. Messages input to a
conference are made visible to other participants in the conference within seconds.

3.2.2.6.2 Mail Services (MSVCS). MSVCS is a tool that gives the users all components needed to support
transmitting electronic mail and any other type of mail functionality.

3.2.2.6.3 Tool Command Language (TCL). Tool Command Language is the interpreter and libraries for the
tcl script language and the tk and tcl-x extensions.

 3-8

DRAFT

DRAFT

3.2.2.6.4 Common Message Processor (CMP). CMP is the COE’s message handling portion of the common
support software suite. It provides tools to aid in the preparation and editing of formatted text messages. It
also provides normalization software that converts message data into a format usable by the host application
software from incoming messages.

3.2.2.7 Office Automation

3.2.2.7.1 Windows Application Based Interface (WABI). WABI emulates the MS Windows environment on
the Sun Sparc workstation. WABI allows some MS Windows application programs to be run on the Sun
Sparc workstation. Not all MS Windows applications work correctly under WABI. Sun publishes a list of
applications known to work.

3.2.2.7.2 Netscape Web Browser. The World Wide Web (WWW) provides users access to other government
sites, mailing lists, courseware, educational sites, and commercial sites, to name a few. Netscape provides a
graphical tool for accessing the WWW and searching, reviewing, and retrieving information from available
sources. It supports electronic mail and access to news groups.

3.2.2.7.3 Netscape News Server. Netscape News Server is the News Server from Netscape. It provides
support for hosting news groups on a network.

3.2.2.7.4 NETSITE Server. The Netsite Web Server is a Hypertext Transfer Protocol WWW server.

3.2.2.7.5 Office. The Office manager application allows users to manage their MS-Office applications via a
floating toolbar.

3.2.2.7.6 Powerpoint. Powerpoint is a graphics presentation program.

3.2.2.7.7 Word. Word is a word-processing application.

3.2.2.7.8 Excel. Excel is a spreadsheet application.

3.2.2.8 Software Development Services

3.2.2.8.1 Developer’s Tools

COE Developer’s Tools are COE tools which are available during development, but are not delivered to
operational sites. All interfaces to these tools are at the command line; none of them has a GUI interface.

 3-9

DRAFT

DRAFT

3.2.2.8.1.1 CalcSpace. CalcSpace computes the space required for the segment specified and updates the
hardware descriptor accordingly. The segment referred to must not be compressed and must not contain any
files that do not belong with the segment (e.g., source code) at runtime. The amount of space required is
written to stdout in K bytes.

3.2.2.8.1.2 CanInstall. CanInstall tests a segment to see if it can be installed, which means that all required
segments must already be on the disk and the disk cannot have any conflicting segments.

3.2.2.8.1.3 ConvertSeg. ConvertSeg examines segment descriptors and converts them to the latest format.
The original segment descriptor directory is not modified. The output is in a directory created by the tool and
called SegDescrip.NEW. This directory will be located directly underneath the segment’s home directory
at the same level as SegDescrip.

3.2.2.8.1.4 MakeAttribs. MakeAttribs creates the descriptor file FileAttribs. It recursively traverses
every subdirectory beneath the segment home directory and creates a file containing permission, owner, group,
and filename information.

3.2.2.8.1.5 MakeInstall. MakeInstall writes one or more segments to an installation medium or packages the
segments for distribution over the network. MakeInstall checks to see if VerifySeg has been run
successfully on each of the segments and aborts with an error if it has not.

3.2.2.8.1.6 TestInstall. TestInstall temporarily installs a segment that already resides on disk.

3.2.2.8.1.7 TestRemove. TestRemove removes a segment that was installed by TestInstall.

3.2.2.8.1.8 TimeStamp. TimeStamp puts the current time and date into the VERSION descriptor.

3.2.2.8.1.9 VerifySeg. VerifySeg validates that a segment conforms to the rules for defining a segment.

3.2.2.8.1.10 VerUpdate. VerUpdate updates the segment version number, date, and time in the VERSION
descriptor.

DRAFT

DRAFT

 3-10

APPENDIX A

DII COE TAXONOMY

Technical Working Groups for the DII COE

CATEGORY
TWG LEAD

COMPONENTS

Infrastructure Services Communications Navy Communications

Network Services

Data Management Services Army Data Interchange Service

Database Administration

Database Management Services

File Management Services

Distributed Computing & Object
Management

Air Force Distributed Computing Services

Administration Services USAF System Administration
Security Administration

Network Management Services DISA

Configuration Management
Services

DISA
Inventory Control
Software Distribution
License Management

Multi-Media/Collaboration Services Air Force

Security Services DIA

Support Applications Correlation Navy

MCG&I NIMA

Message Processing Army Message Processing

Alerts Service

Office Automation Air Force Office Automation

On-Line Support

Other Software Development Services DISA HCI Style Guide

Developer s Toolkit

Integration Standards

A-1

DRAFT

DRAFT

APPENDIX B

DII COE KERNEL COMPONENTS

This table provides a detailed list, by platform, of the software segments that are included in the DII COE
Version 3.0 Kernel. These segments and services must be loaded on every DII workstation, within a given
platform, to be considered Level 5 compliant as defined by the DII COE Integration and Runtime
Specifications dated October 23, 1995. Table B-1 provides both the DII COE version numbers as well as the
COTS version numbers where applicable. Also, please note that not all applications/segments will be released
on a single date. The release dates for each platform are as follows:

1. The Solaris 2.4 platform will be released on October 31, 1996.
2. The Solaris 2.5.1 platform will be released on November 08, 1996.
3. The HP-UX 9.07 platform will be released on November 08, 1996.
4. The Windows NT 3.5.1 platform is expected to be released on November 23, 1996.
5. The HP-UX 10.10 platform is expected to be released on November 30, 1996.

Although there are currently only five platforms listed, there are additional UNIX-based platforms that are
scheduled to be released with DII COE Version 3.0 functionality. These are as follows:

 1. Digital Unix 4.2
 2. International Business Machines (IBM) AIX 4.1.4

3. Silicon Graphics (SGI) IRIX 6.2

Table B-1 will be updated as these platforms become available for distribution.

B-1

DRAFT

DRAFT

Kernel 3.0.0.3
Functionality

SUN Solaris 2.4 SUN Solaris 2.5.1 Hewlett-Packard
 UX 9.07

 Hewlett-Packard
 UX 10.10

 Windows
 NT 3.51

Operating System
 Patches

101878-13 102224-06
101905-01 102277-02
101933-01 102292-02
101945-39 102319-01
101959-07 102664-01
101973-16 102680-03
102007-02 102704-02
102042-05 102711-01
102044-01 102756-01
102066-09 102769-03
102070-01 102922-03
102165-02 103070-01
102216-05 103290-02
102218-03

101878-13 102224-06
101905-01 102277-02
101933-01 102292-02
101945-39 102319-01
101959-07 102664-01
101973-16 102680-03
102007-02 102704-02
102042-05 102711-01
102044-01 102756-01
102066-09 102769-03
102070-01 102922-03
102165-02 103070-01
102216-05 103290-02
102218-03

PHCO_6780 PHNE_6013
PHKL_4269 PHSS_5499
PHKL_4334 PHSS_5695
PHKL_6050 PHSS_5696
PHNE_5399 PHSS_6249

PHCO_6780 PHNE_6013
PHKL_4269 PHSS_5499
PHKL_4334 PHSS_5695
PHKL_6050 PHSS_5696
PHNE_5399 PHSS_6249

Service Pack 3 or
higher

Desktop Common Desktop Environment (CDE)
1.0.0.3/TED 4.0

Common Desktop Environment
(CDE) 1.0.0.3/TED 4.0

Common Desktop Environment
(CDE) 1.0.0.3/TED 4.0

Common Desktop Environment
(CDE) 1.0.0.3/TED 4.0

Inherent

Distributed Computing
& Object Management

DCEC 1.0.0.1/1.1 DCE 1.0.0.1/1.1 DCEC 1.0.0.1/1.1 DCEC 1.0.0.1/1.1 N/A

Printing Services Print Services 1.0.0.3 Print Services 1.0.0.3 Print Services 1.0.0.3 Print Services 1.0.0.3 Inherent
Runtime Tools COEAskUser

COEFindSeg
COEInstaller
COEInstError
COEMsg
COEPrompt
COEPromptPasswd
COEUpdateHome

COEAskUser
COEFindSeg
COEInstaller
COEInstError
COEMsg
COEPrompt
COEPromptPasswd
COEUpdateHome

COEAskUser
COEFindSeg
COEInstaller
COEInstError
COEMsg
COEPrompt
COEPromptPasswd
COEUpdateHome

COEAskUser
COEFindSeg
COEInstaller
COEInstError
COEMsg
COEPrompt
COEPromptPasswd
COEUpdateHome

COEAskUser.exe
COEFindSeg.exe
COEInstaller.exe
COEInstError.exe
COEMsg.exe
COEPrompt.exe
COEPromptPasswd.exe

Security
Management

Console Window 1.0.0.1/1.2.1.1
Deadman 1.0.0.1/1.2.1.2
Password 1.0.0.0/1.2.1.1
XDM 1.0.0.0/1.2.1.1

Console Window 1.2.1.1
Deadman 1.2.1.2
Password 1.2.1.1
XDM 1.2.1.1

Security Services (inherent to HP
platform)

Security Services (inherent to HP
platform)

Inherent

System Management Security Manager 1.0 Security Manager 1.0 Security Manager 1.0 Security Manager 1.0 Inherent
Windowing Motif 1.0.0.3/1.2.4

X Windows 1.0.0.3/X.11R5
Motif 1.0.0.3/1.2.4
X Windows 1.0.0.3/X.11R5

Motif 1.0.0.3/1.2.4
X Windows 1.0.0.3/X.11R5

Motif 1.0.0.3/1.2.4
X Windows 1.0.0.3/X.11R5

Inherent

 Table B-1 DII COE Version 3.0 Kernel Components

 B-2

DRAFT

DRAFT

APPENDIX C

DII NON-KERNEL COE COMPONENTS

This table provides a detailed list, by platform, of the DII COE Version 3.0 software segments above and beyond the
Kernel. Table C-1 provides both the DII COE version numbers as well as the COTS version numbers where applicable.
Also, please note that not all applications/segments will be released on a single date. The release dates for each platform
are as follows:

1. The Solaris 2.4 platform will be released on October 31, 1996.
2. The Solaris 2.5.1 platform will be released on November 08, 1996.
3. The HP-UX 9.07 platform will be released on November 08, 1996.
4. The Windows NT 3.5.1 platform is expected to be released on November 23, 1996.
5. The HP-UX 10.10 platform is expected to be released on November 30, 1996.

Those segments marked with an asterisk were not available at the time of release of a given platform. However, they are
mentioned here as it is anticipated that they will be available for release during November ‘96.

Although there are currently only five platforms listed, there are additional UNIX-based platforms that are scheduled to be
released with the DII COE Version 3.0 functionality. These are as follows:

1. Digital’s Unix 4.2
 2. International Business Machines (IBM) AIX 4.1.4

3. Silicon Graphics (SGI) IRIX 6.2

 Table C-1 will be updated as these platforms become available for distribution.

C-1

DRAFT
Function al
Area

SUN Solaris 2.4 SUN Solaris 2.5.1 Hewlett-Packard
 UX 9.0.7

 Hewlett-Packard
 UX 10.10

 Windows NT
 3.51

Communications UB Core 3.0.2.2
* Army Comm Server 1.4.2.4
Link 11/Tadil-A 3.0.2.2

UB Core 3.0.2.2
* Army Comm Server 1.4.2.4
Link 11/Tadil-A 3.0.2.2

UB Core 3.0.2.2
Link 11/Tadil-A 3.0.2.2

UB Core 3.0.2.2
Link 11/Tadil-A 3.0.2.2

N/A

Data Management
Services

* Oracle 1.0.0.4/ 7.2.2.4
Sybase 1.0.0.3/ 10.0.2a
Informix 1.0.0.1/7.12
* JCALS 1.0.0.0

* Oracle 7.2.2.4
* Sybase 11.0
Informix 1.0.0.1/ 7.12

Oracle 1.0.0.4/ 7.2.2.4
Sybase 1.0.0.3/ 10.0.2
JCALS 1.0.0.0

Oracle 7.2.2.4
Sybase 11.0

N/A

Distributed Computing &
Object Management

DCES 1.0.0.4/1.1
* DCE DFS 1.0.0.0/1.1
* DCE Cell Manager 1.0.0.0/1.1
News Make Group 1.0.0.1
* WINDD 1.0.0.1

DCES 1.0.0.4/1.1
DCE DFS 1.0.0.0/1.1
DCE Cell Manager 1.0.0.0/1.1
News Make Group 1.0.0.1
* WINDD 1.0.0.1

DCES 1.0.0.4/1.1
News Make Group 1.0.0.1
* WINDD 1.0.0.1

DCES 1.0.0.4/1.1
News Make Group 1.0.0.1

N/A

Management Services FTP Tool 1.0.0.1
GZIP 1.0.0.1/ 1.2.4
PERL 1.0.0.1/ 5.0.0.2
* NetMetrix 1.0.0.0/ 4.5.0
* Empire 1.0.0.1/ 1.35.0.2
* SPI 1.0.0.1/ 3.2.2
* Courtney 1.0.0.1
* Crack 1.0.0.0
* SATAN 1.0.0.0
TCP Wrappers 1.0.0.1
Tripwire 1.0.0.1/1.2
Tivoli 3.0.0.4
NewsPrint Software 1.0.0.2/2.5
NewsPrint Printer Config 1.0.0.1/2.5

FTPTool 1.0.0.1
GZIP 1.0.0.1/ 1.2.4
* PERL 1.0.0.1/ 5.0.0.2
* NetMetrix 1.0.0.0/4.5.0
* Empire 1.0.0.1/ 1.35.0.2
* SPI 1.0.0.1/ 3.2.2
* Courtney 1.0.0.1
* Crack 1.0.0.0
* SATAN 1.0.0.0
TCP Wrappers 1.0.0.1
Tripwire 1.0.0.1/1.2
Tivoli 3.0.0.4
NewsPrint Software 1.0.0.2/2.5
NewsPrint Printer Config 1.0.0.1/2.5

GZIP 1.0.0.1/ 1.2.4
PERL 1.0.0.1/5.0.0.2
* NetMetrix 1.0.0.0/4.5.0
* Empire 1.0.0.1/2.00b
* STREAMS 1.0.0.0
* Crack 1.0.0.0
* SATAN 1.0.0.0
* TCP Wrappers 1.0.0.1
* Tripwire 1.0.0.1/1.2

GZIP 1.0.0.1/1.2.4
Perl 1.0.0.1/5.0.0.2
 NetMetrix 1.0.0.0/4.5.0
 Empire 1.0.0.1/2.0.0b
Crack 1.0.0.0
SATAN 1.0.0.0
TCP Wrappers 1.0.0.1
Tripwire 1.0.0.1/1.2

N/A

Mapping, Charting,
Geodesy & Imagery

JMTK 1.0.0.6 JMTK 1.0.0.6 JMTK 1.0.0.6 JMTK 1.0.0.6 N/A

Message Processing IRCC 1.0.0.2/1.16
IRCS 1.0.0.1/2.8.21
MSVCS 1.0.0.2/NA
TCL 1.0.0.2/7.4
* CMP 1.0.2.2 (File based)
* CMP 1.0.1.2 (Informix based)

IRCC 1.0.0.2/1.16
IRCS 1.0.0.1/2.8.21
MSVCS 1.0.0.2/NA
TCL 1.0.0.2/7.4
* CMP 1.0.2.2 (File based)
* CMP 1.0.1.2 (Informix based)

* IRCC 1.0.0.2/1.16
IRCS 1.0.0.1/2.8.21
* MSVCS 1.0.0.2/NA
* TCL 1.0.0.2/7.4

IRCC 1.0.0.2/1.16
IRCS 1.0.0.1/2.8.21
MSVCS 1.0.0.2/NA
TCL 1.0.0.2/7.4

IRCC 1.0.0.0

Office Automation Netscape Web Browser 2.0.0.2/2.0
Netscape News Server 1.0.0.2/2.0
NETSITE Server 1.0.0.1/1.1
WABI 1.0.0.2/2.2

Netscape Web Browser 2.0.0.2/2.0
Netscape News Server 1.0.0.2/2.0
NETSITE Server 1.0.0.1/1.1
WABI 1.0.0.2/2.2

Netscape Web Browser 2.0.0.2/2.0
Netscape News Server 1.0.0.2/2.0
NETSITE Server 1.0.0.1/1.1

Netscape Web Browser
2.0.0.2/2.0
Netscape News Server 1.0.0.2/2.0
NETSITE Server 1.0.0.1/1.1
WABI 1.0.0.2/2.2

Netscape Web Browser
1.0.0.1/2.0
Powerpoint 1.0.0.0/7.0
Word 1.0.0.0/7.0
Excel 1.0.0.0/7.0
MS Button Bar 1.0.0.0/4.2

 Software Development
Services:

Developers’ Tools

CalcSpace 1.0.0.4
CanInstall 1.0.0.6
ConvertSeg 1.0.0.7
MakeAttribs 1.0.0.7
MakeInstall 1.0.1.5
TestInstall 1.0.0.7
TestRemove 1.0.0.6
TimeStamp 1.0.0.6
VerfySeg 1.0.0.7
VerUpdate 1.0.1.5

CalcSpace 1.0.0.4
CanInstall 1.0.0.6
ConvertSeg 1.0.0.7
MakeAttribs 1.0.0.7
MakeInstall 1.0.1.5
TestInstall 1.0.0.7
TestRemove 1.0.0.6
TimeStamp 1.0.0.6
VerfySeg 1.0.0.7
VerUpdate 1.0.1.5

CalcSpace 1.0.0.4
CanInstall 1.0.0.6
ConvertSeg 1.0.0.7
MakeAttribs 1.0.0.7
MakeInstall 1.0.1.5
TestInstall 1.0.0.7
TestRemove 1.0.0.6
TimeStamp 1.0.0.6
VerfySeg 1.0.0.7
VerUpdate 1.0.1.5

CalcSpace 1.0.0.4
CanInstall 1.0.0.6
ConvertSeg 1.0.0.7
MakeAttribs 1.0.0.7
MakeInstall 1.0.1.5
TestInstall 1.0.0.7
TestRemove 1.0.0.6
TimeStamp 1.0.0.6
VerfySeg 1.0.0.7
VerUpdate 1.0.1.5

CalSpace 1.0.0.4
CanInstall 1.0.0.6
MakeInstall 1.0.1.5
TestInstall 1.0.0.7
TestRemove 1.0.0.6
TimeStamp 1.0.0.6
VerfySeg 1.0.0.7
VerUpdate 1.0.1.5

 Table C-1 DII COE Version 3.0 Non-Kernel Components
C-2

